(16x)^2+(9x)^2=40

Simple and best practice solution for (16x)^2+(9x)^2=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16x)^2+(9x)^2=40 equation:



(16x)^2+(9x)^2=40
We move all terms to the left:
(16x)^2+(9x)^2-(40)=0
We add all the numbers together, and all the variables
25x^2-40=0
a = 25; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·25·(-40)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*25}=\frac{0-20\sqrt{10}}{50} =-\frac{20\sqrt{10}}{50} =-\frac{2\sqrt{10}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*25}=\frac{0+20\sqrt{10}}{50} =\frac{20\sqrt{10}}{50} =\frac{2\sqrt{10}}{5} $

See similar equations:

| 10x-126=2x-14 | | .0769x=1 | | -7b+4=4(6b+1) | | 30-3r=-5(2r-7) | | 30-3r=-10r-35 | | -5(2p+2)=-5(3p+1) | | -10p+10=-15p+5 | | 3(x+2)-14=18 | | -4x-5=-5+x | | 5x-1=(2x-8)-6 | | -6x+6=4x-14 | | 36-6w=3w | | 5x2-8x-4=0 | | 5x3-8x-4=0 | | -2x+2=-3x+11 | | 3x-39=0 | | 6x-4=-7x+61 | | -81=6u-13u-18 | | x=180-94 | | x=180-99 | | 3w/2=9 | | (48/(x-50))*100=50/x*100 | | 50/x=48/x-50 | | 28-(8x)+-52=12 | | 4/11-8x=-8x+6/11 | | 9^x-(9^x-2)=240 | | 45+5v=10v | | 2w=9-w | | 9^x-9^x-2=240 | | 27-3/8x=-3/8+27 | | 3x^2+20x-87=0 | | x5+11x+44=0 |

Equations solver categories